Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
World J Clin Oncol ; 12(5): 309-322, 2021 May 24.
Article in English | MEDLINE | ID: covidwho-1271031

ABSTRACT

Even though the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is related to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), identifying effective and safe therapeutic strategies remains challenging. In search of finding effective treatments to eradicate the virus and improve disease symptoms, scientists are exploring possible therapies such as anti-viral, anti-malaria, immune therapy, and hormone treatments. However, the efficacy of these treatments was not validated on either SARS-CoV or MERS-CoV. In this study, we have reviewed synthetic evidence achieved through systematic and meta-analysis of therapeutics specific for SARS-CoV-2 and observed that the use of the above-mentioned therapies had no clinical benefits in coronavirus disease 2019 patients and, conversely, displayed side effects.

2.
Curr Pharm Des ; 26(41): 5278-5285, 2020.
Article in English | MEDLINE | ID: covidwho-1073201

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an ongoing, rapidly spreading pandemic caused by Severe Acute Respiratory Syndrome Coronavirus2 (SARS-CoV2). Among all the infected countries around the globe as of now (June 15, 2020), the total confirmed positive cases reported are 7,805,148, with the death of 431,192. At present, no specialized treatments evolved to cure COVID-19. Its treatment is symptomatic. Though huge efforts are being made to produce potential therapies to scuffle COVID-19, no drug has been discovered so far. OBJECTIVE: Natural products have been playing a significant role in disease control since ancient days. These products serve as templates for designing new anti-microbial agents with a different mechanism of action and also open a door for investigation of effective anti-viral drugs to combat COVID-19. By focusing on this, the authors have narrated the basic structure, infection, and pathogenesis of SARS-CoV2 virus in humans and also reported various natural products or plant-based extracts/bioactive compounds tested against coronaviruses like SARS and MERS, as these viruses are structurally similar to SARS-CoV2 and can be used in designing novel drug against this virus. CONCLUSION: The natural products having the potential to combat SARS, MERS, and other viruses reviewed in this review article might have anti-viral activities against the SARS-CoV2 virus and can be used directly for further preclinical studies. Therefore, all efforts should be focused on overcoming this serious problem to save many people's lives all over the world.


Subject(s)
Antiviral Agents , Biological Products , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Humans , Pandemics , SARS-CoV-2
3.
J Biomol Struct Dyn ; 39(7): 2617-2627, 2021 04.
Article in English | MEDLINE | ID: covidwho-27258

ABSTRACT

Recent outbreak of Coronavirus disease (COVID-19) pandemic around the world is associated with 'severe acute respiratory syndrome' (SARS-CoV2) in humans. SARS-CoV2 is an enveloped virus and E proteins present in them are reported to form ion channels, which is mainly associated with pathogenesis. Thus, there is always a quest to inhibit these ion channels, which in turn may help in controlling diseases caused by SARS-CoV2 in humans. Considering this, in the present study, authors employed computational approaches for studying the structure as well as function of the human 'SARS-CoV2 E' protein as well as its interaction with various phytochemicals. Result obtained revealed that α-helix and loops present in this protein experience random movement under optimal condition, which in turn modulate ion channel activity; thereby aiding the pathogenesis caused via SARS-CoV2 in human and other vertebrates. However, after binding with Belachinal, Macaflavanone E, and Vibsanol B, the random motion of the human 'SARS-CoV2 E' protein gets reduced, this, in turn, inhibits the function of the 'SARS-CoV2 E' protein. It is pertinent to note that two amino acids, namely VAL25 and PHE26, play a key role while interacting with these three phytochemicals. As these three phytochemicals, namely, Belachinal, Macaflavanone E & Vibsanol B, have passed the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) property as well as 'Lipinski's Rule of 5s', they may be utilized as drugs in controlling disease caused via SARS-COV2, after further investigation.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Coronavirus Envelope Proteins , Animals , Humans , Ion Channels , RNA, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL